General Relativity and Black Holes – Week 7

Gustav Holzegel

November 24, 2021

1 Exercises

The following problems investigate the relation between the intrinsic and extrinsic geometry of (spacelike) hypersurfaces in a spacetime. (The concepts introduced below are in fact much more general and work for submanifolds of arbitrary co-dimension in a pseudo-Riemannian manifold.)

Let (\overline{M}, g) be a spacetime and M be a spacelike hypersurface with (locally defined) future directed unit normal n. A smooth map $X: M \to T\overline{M}$ such that $\pi \circ X(p) = p$ (where $\pi: T\overline{M} \to \overline{M}$ is the standard projection) will be called an \overline{M} vectorfield on M. Note that

- the restriction of a spacetime vectorfield $X : \overline{M} \to T\overline{M}$ to M is an \overline{M} vectorfield on M.
- we can decompose an \overline{M} vectorfield on M into its normal and tangential (to TM) components, which we denote by \mathbf{tan} and \mathbf{nor} .
- vectorfields on $M, X : M \to TM$, can be considered as \overline{M} vectorfields (with vanishing normal component) using the push forward of the inclusion map.
- 1. (The induced connection.) For X, Y vectorfields on M define a map $D: X(M) \times X(M) \to X(M)$ by

$$D_X Y := \tan[\nabla_X Y]. \tag{1}$$

Here $[\nabla_X Y]$ on the right is defined by first extending X and Y to vectorfields on \overline{M} , then taking the covariant derivative and finally restricting the result to M.

- (a) Show that $[\nabla_X Y]$ and hence (1) are well defined, i.e. in particular that the definitions do not depend on how one extends X and Y from M to \overline{M} .
- (b) Show that the map D defines a connection on M. HINT: Recall the properties of a connection from the notes.
- (c) Show that D is in fact the Levi-Civita connection of the Riemannian manifold (M, h). HINT: Write out the formula for $2g(\nabla_X Y, Z)$ in the proof of Proposition 2.54 of the notes for X, Y, Z vectorfields on M extended to \overline{M} and take the restriction to M.
- 2. (The second fundamental form.) We define the second fundamental form of M in \overline{M} as the (0,2)-tensor field on M given by

$$K(X,Y) := g(\nabla_X n, Y),$$

for all $X, Y \in X(M)$.

- (a) Check that this is indeed a tensorfield and that K(X,Y) = K(Y,X), for all $X,Y \in X(M)$.
- (b) Show that $[\nabla_X Y] = D_X Y + K(X,Y)n$, for all $X,Y \in X(M)$, where $[\nabla_X Y]$ is defined as in Exercise 1.
- 3. (The Gauss equation.) Prove that for X, Y, Z, W vectorfields all tangent to M we have

$$h\left(Riem(X,Y)Z,W\right) = g\left(\overline{Riem}(X,Y)Z,W\right) + K(X,Z)K(Y,W) - K(X,W)K(Y,Z). \tag{2}$$

Here K is defined as in Exercise 2, h denotes the induced Riemannian metric on M, \overline{Riem} the Riemann tensor of \overline{M} and Riem the Riemann tensor of M.

2 Problems and Discussion

1. (The Codazzi equation.) This problem is a direct follow-up of Exercise 3. Prove that for X,Y,Z vectorfields all tangent to M we have

$$g\left(\overline{Riem}(X,Y)Z,n\right) = (\nabla_Y K)(X,Z) - (\nabla_X K)(Y,Z) \tag{3}$$

Here K is defined as in Exercise 2 and \overline{Riem} denotes the Riemann tensor of \overline{M} and Riem the Riemann tensor of M. (You should give meaning to $\nabla_Y K$.)

- 2. (Generators of null hypersurfaces.) Let (M,g) be a spacetime and C a smooth null hypersurface in M. Let N be a normal vectorfield for C. Show that the integral curves of N are pre-geodesics, i.e. they become geodesics after a change of parametrisation.
 - Remark: The integral curves are called the *generators* of the null hypersurface (why?). What are the generators in the case of the event horizon of the Schwarzschild spacetime?